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This document contains several parallel programming solutions to the drug design exemplar using alternative parallel
and distributed computing (PDC) technologies. We begin by describing a general solution with a simplification for
educational purposes and provide a serial, or sequential version using this algorithm. Then we describe each of several
parallel implementations that follow this general algorithm. The last chapter provides a discussion of the performance
implications of the solutions and the parallel design patterns used in them.
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CHAPTER

ONE

AN EXAMPLE ON MULTIPLE
PARALLEL AND DISTRIBUTED

SYSTEMS

If you work through all of the versions of the code, you will be using different software libraries on different types of
hardware:

• Single shared-memory multicore machines using the OpenMP library with C++11

• Single shared-memory multicore machines using the C++11 threads library

• Single shared-memory multicore machines using the Go programming language

• Distributed system clusters with several machines using the Message Passing Interface (MPI) library and C++11

• Distributed system clusters with Hadoop installed for map-reduce computing using a Java code example

You will need access to these hardware/software combinations in order to run each version.

1.1 Additional System Requirements

The following examples require that you have Threaded Building Blocks (TBB) installed on your system. This library
from Intel is typically simple to install on linux systems (or you may already have it).

• The OpenMP version

• The C++11 threads version

To explore the Go language implementation, you will need to have Go installed on your system and know how to
compile and run Go programs.
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CHAPTER

TWO

CODE

You can download a full set of code as dd.tar.gz. If you are going to work only with some individual versions,
a link to the code and the Makefile (when appropriate) are given for each implementation. The sequential, OpenMP,
MPI, and threads versions are written in C++11 and have a Makefile.

2.1 Introduction

2.1.1 Background: Drug Design

An important problem in the biological sciences is that of drug design. The goal is to find small molecules, called
ligands, that are good candidates for use as drugs.

At a high level, the problem is simple to state: a protein associated with the disease of interest is identified, and its three-
dimensional structure is found either experimentally or through a molecular modeling computation. A collection of
ligands is tested against the protein: for example, for every orientation of the ligand relative to the protein, computation
is done to test whether the ligand binds with the protein in useful ways (such as tying up a biologically active region
on the protein). A score is set based on these binding properties, and the best scores are flagged, identifying ligands
that would make good drug candidates.
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2.1.2 Algorithmic Strategy

We will apply a map-reduce strategy to this problem, which can be implemented using a master-worker design pattern.

Our map-reduce strategy uses three stages of processing.

1. First, we will generate many ligands to be tested agains a given protein, using a function
Generate_tasks(). This function produces many [ligand, protein] pairs (in this case, all with
the same protein) for the next stage.

2. Next, we will apply a Map() function to each ligand and the given protein, which will compute the binding
score for that [ligand, protein] pair. This Map() function will produce a pair [score, ligand]
since we want to know the highest-scoring ligands.

3. Finally, we identify the ligands with the highest scores, using a function Reduce() applied to the [score,
ligand] pairs.

These functions could be implemented sequentially, or they can be called by multiple processes or threads to perform
the drug-design computation in parallel: one process, called the master, can fill a task queue with pairs obtained from
Generate_tasks(). Many worker processes can pull tasks off the task queue and apply the function Map() to
them. The master can then collect results from the workers and apply Reduce() to determine the highest-scoring
ligand(s).

Note that if the Reduce() function is expensive to apply, or if the stream of [score, ligand] pairs produced
by calls to Map() becomes too large, the Reduce() stage may be parallelized as well.

This map-reduce approach has been used on clusters and large NUMA machines. Stanford University’s Fold-
ing@home project also involves using idle processing resources from thousands of volunteers’ personal computers
to run computations on protein folding and related diseases.

2.1.3 Simplified Problem Definition

Working with actual ligand and protein data is beyond the scope of this example, so we will represent the computation
by a simpler string-based comparison.

Specifically, we simplify the computation as follows:

• Proteins and ligands will be represented as (randomly-generated) character strings.

• The docking-problem computation will be represented by comparing a ligand string L to a protein
string P. The score for a pair [L, P] will be the maximum number of matching characters among
all possibilities when L is compared to P, moving from left to right, allowing possible insertions and
deletions. For example, if L is the string “cxtbcrv” and P is the string “lcacxtqvivg,” then the score
is 4, arising from this comparison of L to a segment of P:

This is not the only comparison of that ligand to that protein that yields four matching characters. Another one is

However, there is no comparison that matches five characters while moving from left to right, so the score is 4.

2.1. Introduction 4
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2.2 A Sequential Solution

Let’s first examine a traditional sequential (also called serial) solution that uses no parallelism, of the simplified version
of this algorithm described in the previous chapter. As with many parallel implementations of algorithms, this serial
version can form the basis for a parallel solution. We will later see several parallel solutions that have been updated
from the following serial version.

You will want to examine the code itself while reading this chapter.

2.2.1 Implementation

In the complete archive, dd.tar.gz, this example is under the dd/serial directory.

Alternatively, for this chapter, these are the individual files to download:

dd_serial.cpp

Makefile

The Makefile is for use on linux systems.

The example program provides a sequential C++ implementation of our simplified drug design problem.

Note: The program optionally accepts up to three command-line arguments:

1. maximum length of the (randomly generated) ligand strings

2. number of ligands generated

3. protein string to which ligands will be compared

2.2.2 Compilation:

A straightforward compile can be used for this sequential example:

g++ -o dd_serial dd_serial.cpp

Or you can use the makefile and simply type ‘make’ at the command line on a linux system.

The Code

In this implementation, the class MR encapsulates the map-reduce steps Generate_tasks(), Map(), and
Reduce() as private methods (member functions of the class), and a public method run() invokes those steps
according to a map-reduce algorithmic strategy (see previous Introduction section for detailed explanation). We have
highlighted calls to the methods representing map-reduce steps in the following code segment from MR::run().

2.2. A Sequential Solution 5
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Generate_tasks(tasks);
// assert -- tasks is non-empty

while (!tasks.empty()) {
Map(tasks.front(), pairs);
tasks.pop();

}

do_sort(pairs);

int next = 0; // index of first unprocessed pair in pairs[]
while (next < pairs.size()) {
string values;
values = "";
int key = pairs[next].key;
next = Reduce(key, pairs, next, values);
Pair p(key, values);
results.push_back(p);

}

Comments

• We use the STL containers queue<> and vector<> to hold the results from each of the map-reduce steps:
namely, the task queue of ligands to process, the list key-value pairs produced by the Map() phase, and the
list of resulting key-value pairs produced by calls to Reduce(). We define those container variables as data
members in the class MR:

queue<string> tasks;

vector<Pair> pairs, results;

• Here, Pair is a struct representing key-value pairs with the desired types:

struct Pair {
int key;
string val;
Pair(int k, const string &v) {key=k; val=v;}

};

• In the example code, Generate_tasks() merely produces nligands strings of random lower-case letters,
each having a random length between 0 and max_ligand. The program stores those strings in a task queue
named tasks.

• For each ligand in the task queue, the Map() function computes the match score from comparing a string repre-
senting that ligand to a global string representing a target protein, using the simplified match-scoring algorithm
described above. Map() then yields a key-value pair consisting of that score and that ligand, respectively.

• The key-value pairs produced by all calls to Map() are sorted by key in order to group pairs with the same
score. Then Reduce() is called once for each of those groups in order to yield a vector of Pairs consisting
of a score s together with a list of all ligands whose best score was s.

Note: Map-reduce frameworks such as the open-source Hadoop commonly use sorting to group values for a
given key, as does our program. This has the additional benefit of producing sorted results from the reduce stage.
Also, the staged processes of performing all Map() calls before sorting and of performing all Reduce() calls
after the completion of sorting are also common among map-reduce frameworks.

2.2. A Sequential Solution 6
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• The methods Generate_tasks(), Map(), and Reduce() may seem like unnecessary complication for
this problem since they abstract so little code. Indeed, we could certainly rewrite the program more simply and
briefly without them. We chose this expression for several reasons:

– We can compare code segments from MR::run() directly with corresponding segments in upcoming
parallel implementations to focus on the parallelization changes and hide the common code in method
calls.

– The methods Generate_tasks(), Map(), and Reduce() make it obvious where to insert more
realistic task generation, docking algorithm, etc., and where to change our map-reduce code examples for
problems other than drug design.

– We use these three method names in descriptions of the map-reduce pattern elsewhere.

• We have not attempted to implement the fault tolerance and scalability features of a production map-reduce
framework such as Hadoop.

Questions for Exploration

• Compile and test run the sequential program. Determine values for the command-line arguments
max_ligand‘‘(maximum length of a ligand string) and ‘‘nligands (total number of
ligands to process) that lead to a tolerably long computation for experimenting (e.g., perhaps 15 seconds to
a minute of computation). Note the following about our simplified computational problem:

– Our stand-in scoring algorithm is exponential in the lengths of the ligand and protein strings. Thus, a large
value of max_ligand may cause an extremely lengthy computation. Altering max_ligand can help
in finding a test computation of a desired order of magnitude.

– We expect the computation time to increase approximately linearly with the number of ligands nligands.
However, if nligands is relatively small, you may notice irregular jumps to long computation times
when increasing nligands. This is because our simple random algorithm for generating ligands pro-
duces ligand strings using random(), as well as ligands with random lengths as well as random content.
Because of the order-of-magnitude effect of ligand length, a sudden long ligand (meaning more characters
than those before) may greatly increase the computation time.

• If you have more realistic algorithms for docking and/or more realistic data for ligands and proteins, modify the
program to incorporate those elements, and compare the results from your modified program to results obtained
by other means (other software, wet-lab results, etc.).

2.3 OpenMP Solution

In the complete archive, dd.tar.gz, this example is under the dd/openMP directory.

Alternatively, for this chapter, these are the individual files to download:

dd_omp.cpp

Makefile

The Makefile is for use on linux systems.

Here, we implement our drug design simulation in parallel using OpenMP, an API that provides compiler directives,
library routines, and environment variables that allow shared-memory multithreading in C/C++. A master thread will
fork off a specified number of worker threads and assign parts of a task to them (read more).

2.3. OpenMP Solution 7
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2.3.1 Implementation

The implementation dd_omp.cpp parallelizes the Map() loop using OpenMP and uses a thread-safe container from
TBB, a C++ template library designed to help avoid some of the difficulties associated with multithreading.

Since we expect the docking algorithm (here represented by computing a match score for comparing a ligand string to
a protein string) to require the bulk of compute time, we will parallelize the Map() stage in our sequential algorithm.
The loop to be parallelized is shown below, from the full sequential implementation, dd_serial.cpp, discussed in the
previous chapter.

while (!tasks.empty()) {
Map(tasks.front(), pairs);
tasks.pop();

}

We will now parallelize this mapping loop by converting it to a for loop, then applying OpenMP’s parallel for
feature - there is no parallel while. For easier use with a for loop, we will replace the tasks queue with a
vector (of the same name) and iterate on index values for that vector.

This causes a potential concurrency problem, though, because multiple OpenMP threads will now each be calling
Map(), and those multiple calls by parallel threads may overlap. There is no potential for error from the first argument
ligand of Map(), since Map() requires simply read-only access for that argument. However, multiple calls of
Map() in different threads might interfere with each other when changing the writable second argument pairs
of Map(), leading to a data race condition. The STL containers are not thread safe, meaning that they provide no
protection against such interference, and errors may result.

Therefore, we will use TBB’s thread-safe concurrent_vector container for pairs, leading to the following
code segments in our OpenMP implementation.

vector<string> tasks;
tbb::concurrent_vector<Pair> pairs;
vector<Pair> results;

Generate_tasks(tasks);
// assert -- tasks is non-empty

#pragma omp parallel for num_threads(nthreads)
for (int t = 0; t < tasks.size(); t++) {

Map(tasks[t], pairs);
}

Since the main thread (i.e., the thread that executes run()) is the only thread that performs the stages that call
Generate_tasks(), to_sort(), and Reduce(), it is safe for the vectors tasks or results to remain
implemented as (non-thread safe) STL containers. See the implementation (dd_omp.cpp) for complete details.

2.3.2 Further Notes

• Most of the changes between the sequential version and this OpenMP version arise from the change in type for
the data member MR::pairs to a thread-safe data type; a few changes have to do with managing the number
of threads to use nthreads. All of the parallel computation is specified by the one-line #pragma directive
shown above - without it, the computation would proceed sequentially.

• This OpenMP implementation has four (optional) command-line arguments. The third argument specifies the
number of OpenMP threads to use (note that this differs from the third argument in the sequential version). In
dd_omp.cpp, the command-line arguments have these effects:

1. maximum length of a (randomly generated) ligand string

2.3. OpenMP Solution 8

http://en.wikipedia.org/wiki/Intel_Threading_Building_Blocks


Drug Design in Parallel,

2. number of ligands generated

3. number of OpenMP threads to request

4. protein string to which ligands will be compared

2.3.3 Questions for Exploration

• Compare the performance of dd_serial.cpp with dd_omp.cpp on a multicore computer using the same values for
max_ligand and nligands. Do you observe speedup for the parallel version?

• Our development system has four cores, and nthreads=4 was used for one of our test runs. We found that
the omp version performed about three times as fast as :the serial version for the same values of max_ligand
and nligands. Can you explain why it didn’t perform four times as fast?

• Use the command-line arguments to experiment with varying the number of OpenMP threads in an invocation
of dd_omp.cpp, while holding max_ligand and nligands unchanged. On a multi-core system, we hope
for better performance when more threads are used. Do you observe such performance improvement when you
time the execution? What happens when the number of threads exceeds the number of cores (or hyperthreads)
on your system? Explain as much as you can about the timing results you observe when you vary the number
of threads.

• You may notice that dd_omp.cpp computes the same maximal score and identifies the same ligands as the
serial version that produces that score, but if more than one ligand yields the maximal score, the order of those
maximal-scoring ligands may differ between the two versions. Can you explain why?

• Our sequential program always produces the same results for given values of the max_ligand, nligands,
and protein command-line arguments. This is because we use the default random-number seed in our code.
Because of this consistency, we can describe the sequential version as being a deterministic computation. Is
dd_omp.cpp a deterministic computation? Explain your answer, and/or state what more you need to know in
order to answer this question.

• If you have more realistic algorithms for docking and/or more realistic data for ligands and proteins, modify the
openMP program to incorporate those elements, and compare the results from your modified program to results
obtained by other means (other software, wet-lab results, etc.). How does the performance of your modified
OpenMP version compare to what you observed from your modified sequential version?

• Whereas our serial implementation used a queue data structure for tasks, this implementation uses a vector
data structure, and parallelizes the “map” stage using OpenMP’s omp parallel for pragma. This suffices
for our simplified example, because we generate all ligands before processing any of them. However, some
computations require a task queue, since processing some tasks may generate others (not out of the question
for drug design, since high-scoring ligands might lead one to consider similar ligands in search of even higher
scores). Challenge problem: Modify dd_omp.cpp to use a task queue instead of a task vector.

Note:

– Use a thread-safe queue data structure for tasks, such as tbb::concurrent_queue or
tbb::concurrent_bounded_queue, because multiple threads may attempt to modify
the queue at the same time.

– Instead of omp parallel for, use OpenMP 3.0 tasks. You can parallelize a while loop
that moves through the task queue using omp parallel to enclose that loop.

– Depending on your algorithm, it may help to use “sentinel” values, as described in Chapter 8 of
this book or as used by the Boost threads implementation in the next page.

2.3. OpenMP Solution 9
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2.4 C++11 Threads Solution

In the complete archive, dd.tar.gz, this example is under the dd/threads directory.

Alternatively, for this chapter, these are the individual files to download:

dd_threads.cpp

Makefile

The Makefile is for use on linux systems.

In the OpenMP implementation, the OpenMP runtime system implicitly creates and manages threads for us. The
dd_threads.cpp implementation parallelizes the computationally expensive Map() stage by using the new C++11
standard threads instead of OpenMP. This requires us to explicitly create and manage our own threads, using a master-
worker parallel programming pattern driven by tasks, and a task queue produced by Generate_tasks().

We will examine the C++11 threads implementation by comparing it to the sequential implementation. You may want
to have each of them open in an editor as you read along.

The main routine for map-reduce computing in both implementations is MR::run(), and this routine is identical
in the two except for the “map” stage and for the threads version handling an extra argument nthreads. In the
serial implementation, the “map” stage simply removes elements from the task queue and calls Map() for each such
element, via the following code.

while (!tasks.empty()) {
Map(tasks.front(), pairs);
tasks.pop();

}

However, the threads implementation of the “map” stage creates an array pool of threads to perform the calls to
Map(), then waits for those threads to complete their work by calling the join() method for each thread:

thread *pool = new thread[nthreads];
for (int i = 0; i < nthreads; i++)
pool[i] = thread(&MR::do_Maps, this);

for (int i = 0; i < nthreads; i++)
pool[i].join();

In this snippet from the threads implementation, we define the function MR::do_Maps() for performing calls to
Map():

void MR::do_Maps(void) {
string lig;
tasks.pop(lig);
while (lig != SENTINEL) {

Map(lig, pairs);
tasks.pop(lig);

}
tasks.push(SENTINEL); // restore end marker for another thread

}

This method do_Maps() serves as the “main program” for each thread, and that method repeatedly pops a new
ligand string lig from the task queue, and calls Map() with lig until it encounters the end marker SENTINEL.

Since multiple threads may access the shared task queue tasks at the same time, that task queue must be thread-safe,
so we defined it using a TBB container:

tbb::concurrent_bounded_queue<string> tasks;

2.4. C++11 Threads Solution 10
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We chose tbb::concurrent_bounded_queue instead of tbb::concurrent_queue because the bounded
type offers a blocking pop() method, which will cause a thread to wait until work becomes available in the queue;
also, we do not anticipate a need for a task queue of unbounded size. Blocking on the task queue isn’t actually
necessary for our simplified application, because all the tasks are generated before any of the threads begin operating
on those tasks. However, this blocking strategy supports a dynamic task queue, in which new tasks can be added to the
queue while other tasks are being processed, a requirement that often arises in other applications.

2.4.1 Further Notes

• The SENTINEL task value indicates that no more tasks remain. Each thread consumes one SENTINEL from
the task queue so it can know when to exit, and adds one SENTINEL to the task queue just before that thread
exits, which then enables another thread to finish.

• As with the OpenMP version, the threads implementation uses a thread-safe vector
(tbb::concurrent_vector<Pair> pairs;) for storing the key-value pairs produced by calls to
Map(), since multiple threads might access that shared vector at the same time.

2.4.2 Questions for exploration

• Compile and run the code, and compare its performance to the serial version and to other parallel implementa-
tions.

• Concurrent task queue: consider the “map” stage in our sequential implementation, which uses an STL container
instead of a TBB container for the task queue tasks:

while (!tasks.empty()) {
Map(tasks.front(), pairs);
tasks.pop();

}

Note:

– TBB container classes tbb::concurrent_queue and
tbb::concurrent_bounded_queue do not provide a method front(). Instead,
they provide a method try_pop() (with one argument). It works as follows: if the queue
is empty, it returns immediately (non-blocking) without making any changes. If the queue is
non-empty, it removes the first element from the queue and assigns it to the argument. This ac-
complishes the work of an STL queue’s front() and pop() methods in a single operation.
Describe a parallel computing scenario in which a single (atomic) operation try_pop() is
preferable to separate operations front() and pop(), and explain why we should prefer it.

– Given that we choose a TBB queue container for the type of tasks, would it be safe to have
multiple threads execute the following code (which more closely mirrors our sequential opera-
tion)?

string lig;
while (!tasks.empty()) {

tasks.try_pop(lig);
Map(lig, pairs);

}

If it is safe, explain how you know it is so. If something can go wrong with this code, describe a
scenario in which it fails to behave correctly.

2.4. C++11 Threads Solution 11
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• The purpose of SENTINEL in our threads implementation is to insure that every (non-SENTINEL) ele-
ment in the task queue tasks is processed by some thread, and that all threads terminate (return from
do_Maps()) when no more (non-SENTINEL) elements are available. Verify that this goal is achieved in
dd_threads.cpp, or describe a scenario in which the goal fails.

• Revise dd_threads.cpp> to use a tbb::concurrent_queue container instead of a
tbb::concurrent_bounded_queue container for the task queue tasks.

Note:

– tbb::concurrent_queue does not provide the blocking method pop() used in
dd_threads.cpp, so some other synchronization strategy will be required.

– However, in our simplified problem, the task queue tasks doesn’t change during the “map”
stage, so threads may finish once tasks becomes empty.

– Be sure to understand the concurrent task queue exercise above (italicized) before attempting
this exercise.

– Is a SENTINEL value needed for your solution?

• For further ideas, see exercises for other parallel implementations.

2.5 A Message Passing Interface (MPI) Solution

In the complete archive, dd.tar.gz, this example is under the dd/MPI directory.

Alternatively, for this chapter, these are the individual files to download:

dd_mpi.cpp

Makefile

The Makefile is for use on linux systems.

2.5.1 A cluster system

Now we turn to a solution for use on clusters of computer systems. Because each computer in the cluster is a stan-
dalone machine, the work will need to be coordinated by distributing it across the machines in separate processes and
ccommunicating between those processes using message passing, which is provided by the MPI library.

2.5.2 Single Program, Multiple Data

This program uses the master-worker strategy within a single program. This strategy is implemented within the run
method of the MR class. One process, called the root, or master, has the responsibility for:

• generating all of the ligand scoring tasks

• sending the next available ligand scoring task to a worker when asked

• cordinating when all scoring tasks have been completed

All of the other processes, called workers, will be responsible for:

• asking the master for some work by sending that process a message

• receiving the work and computing the score for that ligand

2.5. A Message Passing Interface (MPI) Solution 12
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In the code, the separation of these tasks is done by keeping track of the rank of each process (a unique number given
to each process that was initialized) and using it to determine what it will do. In this code, this line indicates the section
of code for the master (by tradition number 0):

if (rank == root) {

and the else block corresponding to this if statement holds the code that each worker process on other machines will
execute. This way of indicating code for different types of processes (master and worker) within the same program is
commonly refered to as the single-program, multiple data software pattern in parallel and distributed computing. The
MPI library was designed to use this pattern in this manner.

In a cluster, memory is not shared between all processes, so not every worker process running on a different machine
will have a copy of the vector containing the pairs of processed ligands and their scores. This will be maintained by
the master, or root process. Because of this, the Map function found in previous examples that looked like this:

void MR::Map(const string &ligand, tbb::concurrent_vector<Pair> &pairs) {
Pair p(Help::score(ligand.c_str(), protein.c_str()), ligand);
pairs.push_back(p);

}

now must be split up between the workers, who will do the scoring, and the master, who will take on the task of
pushing the result received from each worker back onto the vector. Take note of where the score method is called in
the worker portion of the run function of the MR class, and the result is sent to the master process. Then note where
that score is received in the master process section of the code and pushed onto the pairs vector.

2.5.3 Questions for Explortion

• Compile and run the code on a cluster (using mpirun). Generally speaking, does it seem faster for a given set of
problem sizes (number of ligands, size of input protein string). As you add processes, does it seem to get faster?

• Investigate how to time how long the code takes to run, using a function called MPI_get_wtime(). Improve this
code by adding the capability to determine its running time and report it with the results.

• What issues arise with timing code like this when the ligands are randomly generated?

2.6 Go Solution

In the complete archive, dd.tar.gz, this example is under the dd/go directory.

Alternatively, for this chapter, this is the individual file to download:

dd_go.go

You will also need to refer to the C++11 threads solution, found in the dd/threads directory in the full archive or
available individually:

dd_threads.cpp

Google’s Go language makes it possible to program with implicitly launched threads, and its channel feature enables
simplified thread-safe processing of shared data.

We will compare the “map” stage in the Go implementation to the “map” stage in the C++11 thread code. The segment
of main() in dd_go.go that implements the “map” stage appears below.

pairs := make(chan Pair, 1024)
for i := 0; i < *nCPU; i++ {
go func() {

p := []byte(*protein)

2.6. Go Solution 13
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for l := range ligands {
pairs <- Pair{score(l, p), l}

}
}()

}

Instead of a vector of Pair as in dd_threads.cpp, the Go implementation creates a channel object called pairs for
communicating Pair objects through message passing. The “map” stage will send Pairs into the channel pairs,
and the sorting stage will receive those Pairs from that same channel. In effect, channel pairs behaves like a queue,
in which the send operation (<-) functions like push_back and the receive operation (also <-, but with the channel
on the right side; not shown in the snippet above) acts like pop.

The C++11 threads implementation allocated an array pool of threads, then had each thread call do_Map() in
order to carry out that thread’s work in the “map” stage. The following code from dd_threads.cpp accomplished these
operations.

thread *pool = new thread[nthreads];
for (int i = 0; i < nthreads; i++)

pool[i] = thread(&MR::do_Maps, this);

Instead of explicitly constructing and storing threads, the Go implementation uses the construct

go func() {
...

}()

This go statement launches threads that each execute an (anonymous) function to do their work, i.e., carry out the
(omitted) instructions indicated by the ellipses . . . (in essence, these instructions carry out the work corresponding to
do_Maps). Note that we could also have defined that as a function foo() elsewhere and called it this way (i.e., go
foo()), but Go is able to employ anonymous functions because it is garbage-collected.

In the C++11 threads implementation, the threads must retrieve ligand values repeatedly from a queue ligands and
then append the retrieved ligand and its score to the vector pairs. The methods do_Maps() and Map() in our
C++11 threads implementation accomplish these steps; their code could be combined into something like this:

string lig;
tasks.pop(lig);
while (lig != SENTINEL) {

Pair p(Help::score(ligand.c_str(), protein.c_str()), ligand);
pairs.push_back(p);
tasks.pop(lig);

}
tasks.push(SENTINEL); // restore end marker for another thread

In comparison, the goroutines (threads) in the Go implementation carry out the following code.

p := []byte(*protein)
for l := range ligands {

pairs <- Pair{score(l, p), l}
}

Here, a goroutine obtains its ligand work tasks from a channel ligands (created and filled during the “task genera-
tion” stage), similarly to the work queue tasks in the C++11 threads implementation. Also, that ligand and its score
are sent to the channel pairs discussed above.
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2.6.1 Further Notes

• The use of Go’s channel feature made some key parts of the Go code more concise, as seen above. For example,
highlighted sections above show that we needed fewer lines of (arguably) less complex code to process a ligand
and produce a Pair in the Go code than in the C++11 threads code. Also, the Go runtime manages thread
creation implicitly, somewhat like OpenMP, whereas we must allocate and manage C++11 threads explicitly.

• Using channels also simplified the synchronization logic in our Go implementation.

– We used (thread-safe) Go channels in place of the task queue tasks and the vector of Pair pairs to
manage the flow of our data. Reasoning with the send and receive operations on channels is at least as easy
as reasoning about queue and vector operations.

– The C++11 threads implementation used TBB concurrent_bounded_queue instead of
concurrent_queue because of the availability of a blocking pop() operation, so that one could mod-
ify dd_threads.cpp to include dynamic ligand generation in a straightforward and correct way, and used a
value SENTINEL to detect when ligands were actually exhausted. Go channels provide these features in
a simpler and readily understood way.

• Just after the “map” stage, the Go implementation stores all Pairs in the channel pairs into an array for sorting.
We cannot store into that array directly during the parallel “map” stage, since that array is not thread-safe.

2.6.2 Questions for exploration

• Compile and run dd_go.go, and compare its performance to dd_serial.cpp and to other parallel implementations.

• For further ideas, see exercises for other parallel implementations.

2.7 Hadoop Solution

In the complete archive, dd.tar.gz, this example is under the dd/hadoop directory.

Alternatively, for this chapter, this is the individual file to download:

dd_hadoop.java

Hadoop is an open-source framework for data-intensive scalable map-reduce computation. Originally developed by
Yahoo! engineers and now an Apache project, Hadoop supports petascale computations in a reasonable amount of
time (given sufficiently large cluster resources), and is used in numerous production web-service enterprises. The
code dd_hadoop.java, implements a solution to our problem for the Hadoop map-reduce framework, which is capable
of data-intensive scalable computing.

In our previous examples, we have modified the coding of a map-reduce framework represented by the C++ method
MR::run() in order to create implementations with various parallelization technologies. Hadoop provides a pow-
erful implementation of such a framework, with optimizations for large-scale data, adaptive scheduling of tasks, au-
tomated recovery from failures (which will likely occur when using many nodes for lengthy computations), and an
extensive system for reusable configuration of jobs. To use Hadoop, one needs only provide Map(), Reduce(), con-
figuration options, and the desired data. This framework-based strategy makes it convenient for Hadoop programmers
to create and launch effective, scalably large computations.

Therefore, we will compare definitions of Map() and Reduce() found in the serial implementation, dd_serial.cpp
to the corresponding definitions in a Hadoop implementation. The serial implementations for our simplified problem
are quite simple:

void MR::Map(const string &ligand, vector<Pair> &pairs) {
Pair p(Help::score(ligand.c_str(), protein.c_str()), ligand);
pairs.push_back(p);
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}

int MR::Reduce(int key, const vector<Pair> &pairs, int index, string &values) {
while (index < pairs.size() && pairs[index].key == key) {

values += pairs[index++].val + " ";
}
return index;

}

Here, Map() has two arguments, a ligand to compare to the target protein and an STL vector pairs of key-value
pairs. A call to Map() appends a pair consisting of that ligand’s score (as key) and that ligand itself (as value) to the
vector pairs. Our Reduce() function extracts all the key-value pairs from the (now sorted) vector pairs having
a given key (i.e., score). It then appends a string consisting of all those values (i.e., ligands) to an array values.
The argument index and the return value are used by MR::run() in order to manage progress through the vector
pairs(our multi-threaded implementations have identical Map() and Reduce() methods, except that a thread-
safe vector type is used for pairs). In brief, Map() receives ligand values and produces pairs, and Reduce()
receives pairs and produces consolidated results in values.

In Hadoop, we define the “map” and “reduce” operations as Java methods Map.map() and Reduce.reduce().
Here are definitions of those methods from dd_hadoop.java:

public void map(LongWritable key, Text value, OutputCollector<IntWritable, Text> output, Reporter reporter)
throws IOException {

String ligand = value.toString();
output.collect(new IntWritable(score(ligand, protein)), value);

}

...

public void reduce(IntWritable key, Iterator<Text> values, OutputCollector<IntWritable, Text> output, Reporter reporter)
throws IOException {

String result = new String("");
while (values.hasNext()) {

result += values.next().toString() + " ";
}
output.collect(key, new Text(result));

}

In brief, our Hadoop implementation’s map() receives a key and a value, and produces pairs to the
OutputCollector argument output, and reduce() receives a key and an iterator of values and produces
consolidated results in an OutputCollector argument (also named output). In Hadoop, the values from key-
value pairs sent to a particular call of reduce() are provided in an iterator rather than a vector or array, since there
may be too many values to hold in memory with very large scale data. Likewise, the OutputCollector type can
handle arbitrarily many key-value pairs.

2.7.1 Further Notes

• The Hadoop types Text, LongWritable, and IntWritable represent text and integer val-
ues in formats that can be communicated through Hadoop’s framework stages. Also, the method
OutputCollector.collect() adds a key-value pair to an OutputCollector instance like output.

• Note on scalability: Our reduce() method consolidates all the ligands with a given score into a single string
(transmitted as Text), but this appending of strings does not scale to very large data. If, for example, trillions of
ligand strings are possible, then reduce() must be revised. For example, one might use a trivial reducer that
will produce a fresh key-value pair for each score and ligand, effectively copying key-value pairs to the same
key-value pairs. Automatic sorting services provided by Hadoop between the “map” and “reduce” stages will
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ensure that the output produced by the “reduce” stage is sorted by the key argument for calls to reduce().
Since those key arguments are scores for ligands in our application, this automatic sorting by key makes it
simpler to identify the ligands with large scores from key-value pairs produced by that trivial reducer.

2.7.2 Questions for exploration

• Try running the example dd_hadoop.java on a system with Hadoop installed.

– This code does not generate data for the “map” stage, so you will have to produce your own randomly
generated ligands, perhaps capturing the output from Generate_tasks() for one of the other imple-
mentations.

– Once you have a data set, you must place it where your Hadoop application can find it. One ordinarily
does this by uploading that data to the Hadoop Distributed File System (HDFS), which is typically tuned
for handling very large data (e.g., unusually large block size and data stored on multiple disks for fault
tolerance).

– Rename the source file to DDHadoop.java (if necessary) before attempting to compile. After compiling
the code, packaging it into a .jar file, and submitting that Hadoop job, you will probably notice that running
the Hadoop job takes far more time than any of our other implementations (including sequential), while
producing the same results. This is because the I/O overhead used to launch a Hadoop job dominates the
computation time for small-scale data. However, with data measured in terabytes of petabytes, it prepares
for effective computations in reasonable time (see Amdahl’s law).

– Hadoop typically places the output from processing in a specified directory on the HDFS. By default, if the
“map” stage generates relatively few key-value pairs, a single thread/process performs reduce() calls
in the “reduce” stage, yielding a single output file (typically named part-00000).

• Modify dd_hadoop.java to use a trivial reducer instead of a reducer that concatenates ligand strings. Compare
the output generated with a trivial reducer to the output generated by dd_hadoop.java.

• Research the configuration change(s) necessary in order to compute with multiple reduce() threads/processes
at the “reduce” stage. Note that each such thread or process produces its own output file part-NNNNN. Examine
those output files, and note that they are sorted by the key argument for reduce() within each output file.

• Would it be possible to scale one of our other implementations to compute with terabytes of data in a reasonable
amount of time? Consider issues such as managing such large data, number of threads/nodes required for
reasonable elapsed time, capacity of data structures, etc. Are some implementations more scalable than others?

• For further ideas, see exercises for other parallel implementations.

2.7.3 Readings about map-reduce frameworks and Hadoop

• [Dean and Ghemawat, 2004] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters, 2004.

• [Hadoop] Apache Software Foundation. Hadoop.

• [White, 2011] T. White, Hadoop: The definitive guide, O’Reilly, 2nd edition, 2011.

2.8 Evaluating the Implementations

2.8.1 Strategic simplifications of the problem

We consider the effects of some of the simplifying choices we have made.
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• Our string-comparison algorithm for the “map” stage only vaguely suggests the chemistry computations of an
actual docking algorithm. However, the computational complexity properties of our representative algorithm
allow us to generate lengthy computation time by increasing the length of ligands (and having a long protein).

• Our implementations generate all of the candidate ligands before proceeding to process any of them. As men-
tioned in exercises, it might be reasonable to generate new ligands as a result of processing. The implementations
dd_serial.cpp and dd_boost.cpp use a queue of ligands to generate the “map” stage work, and could
be adapted to enable new ligands to be generated while others are being processed. We could also modify the Go
implementation dd_go.go similarly, since we could dynamically add new ligands to the channel ligands.

• The amount of time it takes to process a ligand depends greatly on its length. This sometimes shows up in tests
of performance: testing a few more ligands might require a great deal more time to compute. This may or may
not fit with the computational pattern of a realistic docking algorithm. If one wants to model more consistent
running time per ligand, the minimum length of ligands could be raised or lengths of ligands could be held
constant.

2.8.2 The impact of scheduling threads

The way we schedule work for threads in our various parallel implmenentations may have a sizable impact on running
time, since different ligands may vary greatly in computational time in our simplified model.

• By default, OpenMP’s omp parallel for, as used by dd_omp.cpp, presumably divides the vector of
ligands into roughly equal segments, one per thread. With small nligands, if one segment contains more
lengthy ligands than another, it may disproportionately extend the running time of the entire program, with
one thread taking considerably longer than the others. With large nligands, we expect less variability in the
computational load for the threads.

• In our Boost thread implementation dd_boost.cpp, each thread draws a new ligand to process as soon as it
finishes its current ligand. Likewise, the Go code dd_go.go draws ligands from the channel named ligands
. This scheduling strategy should have a load-balancing effect, unless a thread draws a long ligand late in the
“map” stage. One might try reordering the generated ligands in order to achieve better load balancing. For exam-
ple, if ligands were sorted from longest to shortest before the “map” stage in the Boost thread implementation,
the amount of imbalance of loads is limited by the shortness of the final ligands.

2.8.3 Barriers to performance improvement

The degree of parallelism in these implementations is theoretically limited by the implicit barrier after each stage of
processing.

• In all of our implementations, the task generation stage produces all ligands before proceeding to any the “map”
stage. In a different algorithm, parallel processing of ligands might begin as soon as those ligands appear in the
task queue. We wouldn’t expect much speedup from this optimization in our example, since generating a ligand
requires little time, but generation of tasks might take much longer in other problems, and allowing threads to
process those tasks sooner might increase performance in those cases.

• The “map” stage produces all key-value pairs before those pairs are sorted and reduced. This barrier occurs
implicitly when finishing the omp parallel for pragma in our OpenMP implementation dd_omp.cpp,
and as part of the map-reduce framework Hadoop used by dd_hadoop.java. That barrier appears explicitly
in the loop of join() calls in our Boost threads code dd_boost.cpp. At the point of the barrier, some
threads (or processes) have nothing to do while other threads complete their work.

• Perhaps threads that finish early could help carry out a parallel sort of the pairs, for better thread utilization, but
identifying and implementing such a sort takes us beyond the scope of this example.

• The other stages are executed sequentially, so the “barrier” after each of those stages has no effect on computa-
tion time.
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2.8.4 The convenience of a framework

Using a map-reduce framework such as Hadoop enables a programmer to reuse an effective infrastructure of parallel
code, for greater productivity and reliability. A Hadoop implementation hides parallel algorithm complexities such as
managing the granularity, load balancing, collective communication, and synchronization to maintain the thread-safe
task queue, which are common to map-reduce problems and easily represented in a general map-reduce framework.
Also, the fault-tolerance properties of Hadoop make it a scalable tool for computing with extremely large data on very
large clusters.

2.8.5 Looking ahead: Parallel patterns

• Structural and computational patterns (Application architecture level): Map-reduce is a structural pattern. Our
map-reduce algorithms represented in MR::run() methods for parallel implementations use a Master-worker
structural pattern, in which one thread launches multiple worker threads and collects their results.

• Program structure patterns:

– We use the Strict data parallelism pattern in parallel implementations of this exemplar, in which we
apply our Map() algorithm to each element of the task queue (or vector) for independent computa-
tion.

• Implementation strategy patterns:

– In the case of OpenMP and Hadoop, the master-worker computation is provided by the underlying runtime
or framework. In addition, the Boost threads code exhibits an explicit Fork-join program-structure pattern.
The OpenMP code’s omp parallel for pragma implements the Loop parallel program-structure pat-
tern, as does the Boost threads code with its while loop, and the Go implementation with its for loop in
its “map” stage. In addition, Hadoop proceeds using an internal Bulk synchronous parallel (BSP) program-
structure pattern, in which each stage completes its computation, communicates results, and waits for all
threads to complete before the next stage begins. The MR::run() methods of our C++ parallel imple-
mentations for multicore computers also wait for each stage to complete before proceeding to the next,
which is similar to the classical BSP model for distributed computing. The Go implementation exhibits
BSP at both ends of its sort stage, when it constructs an array of all pairs and completes its sorting algo-
rithm. Most of our implementations use a Task queue program-structure pattern, in which the task queue
helps with load balancing of variable-length tasks.

– Besides these program-structure patterns, our examples also illustrate some data-structure patterns,
namely Shared array (which we’ve implemented using TBB’s thread-safe concurrent_vector) and
Shared queue (TBB’s concurrent_bounded_queue). Arguably, the use of channels ligands and
pairs in the Go implementation constitutes a Shared queue as well.

• We named our array of threads pool in the Boost threads implementation in view of the Thread pool pattern
for advancing the program counter. Note that OpenMP also manages a thread pool, and that most runtime
implementations of OpenMP create all the threads they’ll need at the outset of a program and reuse them as
needed for parallel operations throughout that program. Go also manages its own pool of goroutines (threads).
The Go example demonstrates the Message passing coordination pattern. We used no other explicit coordination
patterns in our examples, although the TBB shared data structures internally employ (scalable) Mutual exclusion
in order to avoid race conditions.

Note: Having developed solutions to our drug-design example using a pattern methodology, we emphasize that
methodology does not prescribe one “right” order for considering patterns. For example, if one does not think of map-
reduce as a familiar pattern, it could make sense to examine parallel algorithmic strategy patterns before proceeding to
implementation strategy patterns. Indeed, an expert in applying patterns will possess well-honed skills in insightfully
traversing the hierarchical web of patterns at various levels, in search of excellent solutions.
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2.9 Looking Ahead

2.9.1 Parallel patterns

1. Structural and computational patterns (Application architecture level). Map-reduce is the structural pattern.

2. Parallel algorithm strategy patterns. We use the Data parallelism pattern in parallel implementations of this
exemplar, in which we apply our Map() algorithm to each element of the task queue (or vector) for independent
computation.

3. Implementation strategy patterns.

• Our map-reduce algorithms represented in MR::run() methods for parallel implementations use a
Master-worker program-structure pattern, in which one thread launches multiple worker threads and col-
lects their results. In the case of OpenMP and Hadoop, the master-worker computation is provided by
the underlying runtime or framework. In addition, the Boost threads code exhibits an explicit Fork-join
program-structure pattern, and the OpenMP code’s omp parallel for pragma implements the Loop
parallel program-structure pattern, as does the Boost threads code, with its while loop, and the Go im-
plementation with its for loop in its “map” stage. In addition, Hadoop proceeds using an internal Bulk
synchronous parallel (BSP) program-structure pattern, in which each stage completes its computation,
communicates results and waits for all threads to complete before the next stage begins. The MR::run()
methods of our C++ parallel implementations for multicore computers also wait for each stage to complete
before proceeding to the next, which is similar to the classical BSP model for distributed computing. The
Go implementation exhibits BSP at both ends of its sort stage, when it constructs an array of all pairs and
completes its sorting algorithm. Most of our implementations use a Task queue program-structure pattern,
in which the task queue helps with load balancing of variable-length tasks.

• Besides these program-structure patterns, our examples also illustrate some data-structure patterns,
namely Shared array (which we’ve implemented using TBB’s thread-safe concurrent_vector) and
Shared queue (TBB’s concurrent_bounded_queue). Arguably, the use of channels ligands and
pairs in the Go implementation constitutes a Shared queue as well.

4. We named our array of threads pool in the C++11 threads implementation in view of the Thread pool
advancing-program-counter pattern. Note that OpenMP also manages a thread pool, and that most runtime
implementations of OpenMP create all the threads they’ll need at the outset of a program and reuse them as
needed for parallel operations throughout that program. Go also manages its own pool of goroutines (threads).
The Go example demonstrates the Message passing coordination pattern. We used no other explicit coordination
patterns in our examples, although the TBB shared data structures internally employ (scalable) Mutual exclusion
in order to avoid race conditions.
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